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Lecture outline

Robinson instability

Vlasov equation

The Robinson instability can occur when a bunch in the ring interacts
with the impedance of the fundamental mode or HOM of accelerating
cavities. We will derive the condition for the instability using simple
heuristic arguments, without solving the whole beam dynamics problem.
A rigorous solution can be found in A. Chao’s book.
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Longitudinal dynamics in circular accelerator (no wakes)
The revolution frequency in a ring, ωr = 2π/T , depends on the particle energy,

ωr = ω0(1 − αη) (9.1)

where α is the (linear) slip factor26. Without wakes, the energy change is due to
the RF force. Assuming a parabolic profile of RF potential well (the bunch
length is much shorter than the RF wavelength) the RF restoring force is linear
in z . The longitudinal motion is governed by the following equations:

dz

dt
= −cαη,

dη

dt
=

1

α

ω2
s0

c
z (9.2)

Here η = ∆P/P ≈ ∆E/E , z is the longitudinal coordinate of a particle in the
bunch, ωs0 is the synchrotron frequency, and α is the slip factor

α = α0 − γ
−2 (9.3)

with α0 the momentum compaction factor. In linacs α0 = 0.
Combining the two longitudinal equations we obtain the equation for the
synchrotron oscillations

z̈ +ω2
s0z = 0, η̈+ω2

s0η = 0 (9.4)

26
The standard notation for the slip factor is η, but we use η to denote the relative energy deviation of a particle.
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Robinson instability

Consider a single bunch traveling in a ring and a cavity that has impedance
Z`(ω). The cavity sees a sequence of pulses separated by the revolution period.
Consider M revolutions and find the energy change of the beam due to the
cavity’s longitudinal wake.

RF

The “beam” charge distribution at the location
of the cavity is represented by

λ(z) =

M/2∑
k=−M/2

δ(z − kC ) (9.5)

This is actually the same bunch passing M
times through the cavity (note that the bunch is
considered as a point charge).
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Robinson instability

We now use Eq. (4.12) to find the energy change of the beam.

λ̂(ω) =

∫∞
−∞ dz λ(z)e iωz/c =

M/2∑
k=−M/2

e ikωT

where T = C/c = 2π/ωr is the revolution period. What is the function
|̂λ(ω)|2? This is a periodic function with the period ωr . Here is the plot for
M = 100.
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The area under each peak (when
integrated over ω) is 2πM/T
(verified by numerical integra-
tion). It can be proved mathemat-
ically27 that for M � 1

|̂λ(ω)|2 ≈ 2π

T
M

∞∑
p=−∞ δ(ω− pωr )

(9.6)

27
Compare with Eq. (8.7).
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Robinson instability

Hence the energy change of the bunch is

∆Eb,M = −N
Ne2

π

∫∞
0

dωReZ`(ω)|̂λ(ω)|2 = −
2

T
MQ2

∞∑
p=1

ReZ`(pωr )

where Q = Ne is the bunch charge (note that ReZ`(0) = 0). Since the beam
passes M times during time interval MT the energy change per unit time is

∆Ėb =
1

MT
∆Eb,M = −2

Q2

T 2

∞∑
p=1

ReZ`(pωr ) (9.7)

[This immediately follows from Eq. (4.19) because λ̃(ω) = 1.]
This energy loss of the bunch is compensated by the energy gain in the cavity,
QVacc . The cavity is tuned to compensate for (9.7) with ωr = ω0—the
nominal revolution frequency (corresponding to the nominal energy). That is
ωRF = hω0, h is the harmonic number.
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Robinson instability

Now take into account that a variation of energy changes the revolution
frequency, Eq. (9.1). The uncompensated part is28

∆Ėb
∣∣∣∣
uncomp

= −2
Q2

T 2

∞∑
p=0

ReZ`(pω0(1 − αη)) + 2
Q2

T 2

∞∑
p=0

ReZ`(pω0)

≈2
Q2

T 2
αηω0

∞∑
p=0

p
dReZ`
dω

∣∣∣∣
pω0

(9.8)

Here we have assumed that the deviation η is small and used the Taylor
expansion.
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Let us consider a situation when the
revolution frequency is much larger
than the width of the impedance peak,
so that only one value of p plays a role.
For the fundamental mode in the cavity
this is the harmonic number p = h.

28
Here we ignore the changes in T = 2π/ωr ; this turns out to be small.
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Robinson instability

We have ∆(Ėb/N)/E0 = dη/dt and find

dη

dt
= 2η

Q2

NT 2γmc2
αhω0

dReZ`
dω

∣∣∣∣
ω=hω0

≡ 2

τ
η (9.9)

where

1

τ
= α

Q2hω0

NT 2γmc2

dReZ`
dω

∣∣∣∣
ω=hω0

(9.10)

We now need to go back to the equations of motion (9.2) and modify
the second equation

dη

dt
=

1

α

ω2
s0

c
z +

2

τ
η

Combining this with the equation for z we find

η̈−
2

τ
η̇+ω2

s0η = 0

Seek solution η ∝ e−iωt .
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Robinson instability

We find

−ω2 +
2i

τ
ω+ω2

s0 = 0

Assuming that ω ≈ ωs0 + ∆ω with |∆ω|� ωs0 we find

∆ω =
i

τ
(9.11)

A positive imaginary part of ω (that is τ > 0) means an instability with
the growth time τ. This occurs if dReZ`/dω|ω=hω0 > 0. This is the
Robinson instability.

In our simplified derivation we assumed that the particle arrives at the
location of the cavity with the period 2π/ωr , ignoring the fact that the
beam oscillates longitudinally with the frequency ωs0. Hence our result
is actually valid if ωs0 is much smaller than the width of the resonant
impedance. If this does not hold, the impedance in Eq. (9.7) will be
sampled at the frequencies pωr ±ωs0.
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Robinson instability
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Left plot—unstable beam (above the transition energy); right
plot—stable beam.
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Vlasov equation

�

�

Instead of thinking about the beam as a
collection of discrete particles numbered
from 1 to N, i = 1, 2, . . . ,N, in Vlasov
formalism, one represents a beam as a
“fluid” in a 6-dimensional phase space
(for 3 degrees of freedom). The beam
dynamics is described by the time
evolution of the “fluid” density. This
density function satisfies the Vlasov
equation.

The Vlasov, or kinetic, equation is extremely powerful technique, that
can be used for study of beam stability, intra-beam scattering, quantum
diffusion effects, etc. At the same time it is more complicated than a
typical single-particle analysis often used in accelerator physics for
simpler problems.
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Distribution function in phase space and kinetic equation

We start from considering a simple case of one degree of freedom with
the canonically conjugate variables q and p (it may be x − x ′, y − y ′ of
z − η pair).
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Consider an infinitesimally small region
in phase space dq × dp and let the
number of particles of the beam at time
t in this phase space element be given
by dN. Mathematically infinitesimal
phase element should be physically large
enough to include many particles,
dN � 1. We define the distribution
function of the beam f (q, p, t) such
that

dN(t) = f (q, p, t)dp dq . (9.12)

We can say that the distribution function gives the density of particles in
the phase space.
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Distribution function in phase space and kinetic equation

Particles travel from one place in the phase space to another, and the
distribution function evolves with time. Our goal is to derive the kinetic equation
that governs this evolution. In this derivation, we will assume that the particle
motion is Hamiltonian. We assume that we are given the rate of change of the
coordinate and momentum as functions of q, p and t: q̇(q, p, t) and ṗ(q, p, t).

The number of particles in this region at time t is given by Eq. (9.12). At time
t + dt this number will change because of the flow of particles through the
boundaries. Due to the flow in the q-direction the number of particles that flow
in through the left boundary is

f

(
q −

1

2
dq, p, t

)
× dp q̇

(
q −

1

2
dq, p, t

)
× dt (9.13)

and the number of particles that flow out through the right boundary is

f

(
q +

1

2
dq, p, t

)
× dp q̇

(
q +

1

2
dq, p, t

)
× dt . (9.14)
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Distribution function in phase space and kinetic equation

Similarly, the number of particles which flow in through the lower horizontal
boundary is

f

(
q, p −

1

2
dp, t

)
× dq ṗ

(
q, p −

1

2
dp, t

)
× dt (9.15)

and the number of particles that flow out through the upper horizontal
boundary is

f

(
q, p +

1

2
dp, t

)
× dq ṗ

(
q, p +

1

2
dp, t

)
× dt . (9.16)

The number of particles in the volume dq × dp is now changed

dN(t + dt) − dN(t)

= [f (q, p, t + dt) − f (q, p, t)]dp dq

= (9.17)
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Distribution function in phase space and kinetic equation

= f

(
q −

1

2
dq, p, t

)
dp q̇

(
q −

1

2
dq, p, t

)
dt

− f

(
q +

1

2
dq, p, t

)
dp q̇

(
q +

1

2
dq, p, t

)
dt

+ f

(
q, p −

1

2
dp, t

)
dq ṗ

(
q, p −

1

2
dp, t

)
dt

− f

(
q, p +

1

2
dp, t

)
dq ṗ

(
q, p +

1

2
dp, t

)
dt (9.18)

Dividing this equation by dp dq dt and expanding in Taylor’s series
(keeping only linear terms in dp, dq, dt) gives the following equation

∂f

∂t
+
∂

∂q
q̇(q, p, t)f +

∂

∂p
ṗ(q, p, t)f = 0 . (9.19)

What we derived is the continuity equation for the function f .
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Incompressible Hamiltonian flow

Due to the Hamiltonian nature of the flow in the phase space a medium
represented by a distribution function f is incompressible. This follows from the
Liouville theorem. According to this theorem the volume of a space phase
element does not change in Hamiltonian motion. Since the value of f is the
number of particles in this volume, and this number is conserved, f within a
moving elementary volume is also conserved. The density at a given point of the
phase space q, p however changes because other liquid elements arrive at this
point at a later time.
Mathematically, the fact of incompressibility is reflected in the following
transformation of the continuity equation (9.19). Let us take into account the
Hamiltonian equations q̇ = ∂H/∂p and ṗ = −∂H/∂q:

∂

∂q
q̇(q, p, t) =

∂

∂q

∂H

∂p
=
∂

∂p

∂H

∂q
= −

∂

∂p
ṗ(q, p, t) (9.20)

which allows to rewrite Eq. (9.19) as follows

∂f

∂t
+ q̇

∂f

∂q
+ ṗ

∂f

∂p
= 0 (9.21)
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Distribution function in phase space and kinetic equation

In accelerator physics this equation is often called the Vlasov equation. It
is a partial differential equation which is not easy to solve in most of the
cases.
In case of n degrees of freedom, with the canonical variables qi and pi ,
n = 1, 2, . . . , n, the distribution function f is defined as a density in
2n-dimensional phase space and depends on all these variables,
f (q1, . . . , p1, . . . , t). The Vlasov equation takes the form

∂f

∂t
+

n∑
i=1

(
q̇i
∂f

∂qi
+ ṗi

∂f

∂pi

)
= 0 . (9.22)

Sometimes it is more convenient to normalize f by N, then the integral
of f over the phase space is equal to one.
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Integration of the kinetic equation along trajectories

The distribution function is constant within a moving infinitesimal element of
phase space “liquid”.

�
�

�
�� �� �

�+��� �+��� �+�� Consider a trajectory in the phase space,
and calculate the difference of f at two
close points on this trajectory. We have

df = f (q + dq, p + dp, t + dt) − f (q, p, t)

=
∂f

∂t
dt +

∂f

∂q
dq +

∂f

∂p
dp . (9.23)

Remember that the two points are on the same trajectory, hence, dq = q̇dt and
dp = ṗdt. We find

df =
∂f

∂t
dt + q̇

∂f

∂q
dt + ṗ

∂f

∂p
dt = 0 (9.24)

On the last step we invoked Eq. (9.21). We proved that the function f is
constant along the trajectories.
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Integration of the kinetic equation along trajectories

The above statement opens up a way to find solutions of the Vlasov
equation if the phase space orbits are known. Let q(q0, p0, t) and
p(q0, p0, t) be solutions of the Hamiltonian equations of motion with
initial values q0 and p0 at t = 0, and F (q0, p0) be the initial distribution
function at t = 0. Then the solution of the Vlasov equation is given by
the following equations

f (q, p, t) = F (q0(q, p, t), p0(q, p, t)) , (9.25)

where the functions q0(q, p, t) and p0(q, p, t) are obtained as inverse
functions from equations

q = q(q0, p0, t) , p = p(q0, p0, t) . (9.26)

A Mathematica notebook demonstrates application of this method to the
pendulum motion.
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Phase mixing and decoherence

Consider an ensemble of linear oscillators with the frequency ω, whose
motion is described by the Hamiltonian

H(x , p) =
p2

2
+ω2 x

2

2
. (9.27)

The distribution function f (x , p, t) for these oscillators satisfy the Vlasov
equation

∂f

∂t
−ω2x

∂f

∂p
+ p

∂f

∂x
= 0 . (9.28)

We can easily solve this equation. The trajectory of an oscillator with the
initial coordinate x0 and momentum p0 is

x = x0 cosωt +
p0

ω
sinωt

p = −ωx0 sinωt + p0 cosωt . (9.29)
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Phase mixing and decoherence

Inverting these equations, we find

x0 = x cosωt −
p

ω
sinωt

p0 = ωx sinωt + p cosωt . (9.30)

If F (x , p) is the initial distribution function at t = 0, then, according to
Eq. (9.25) we have

f (x , p, t) = F
(
x cosωt −

p

ω
sinωt,ωx sinωt + p cosωt

)
. (9.31)
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Phase mixing and decoherence

This solution describes rotation of the initial distribution function in the
phase space. An initially offset distribution function results in collective
oscillations of the ensemble.
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Phase mixing and decoherence

A more interesting situation occurs if there is a frequency spread in the
ensemble. Let us assume that each oscillator is characterized by some
parameter η (that does not change with time), and ω is a function of η,
ω(η).

H(x , p, δ) =
p2

2
+ω(η)2 x

2

2
. (9.32)

We then have to add η to the list of the arguments of f and F , and Eq.
(9.31) becomes

f (x , p, t, η) = F

(
x cosω(η)t −

p

ω(η)
sinω(η)t,

ω(η)x sinω(η)t + p cosω(η)t, η

)
. (9.33)
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Phase mixing and decoherence

To find the distribution of oscillators over x and p only one has to
integrate f over η

f̂ (x , p, t) =

∫∞
−∞ dη f (x , p, t, η) . (9.34)

The behavior of the integrated function f̂ is different from the case of
constant ω at large times, even if the spread in frequencies ∆ω is small.
For t & 1/∆ω the oscillators smear out over the phase. This effect is
called the phase mixing and it results in decoherence of collective
oscillations of the ensemble of oscillators. We illustrate this effect with a
Mathematica notebook.
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